
Lecture 3: Introduction to Distributed Systems

Fall 2025                            

CE 528 Cloud Computing

Prof. Yigong Hu

Slides courtesy of Chang Lou and Armando



Administrivia

2

We have sent an email with the project assignments.
• Please double-check your email if you did not see it.

Each student will receive $150 in cloud credits.
• $50 in Google Cloud credits
• $100 in AWS credits

Start your project description
• Template
• example

https://github.com/BU-NU-CLOUD-SP18/sample-project/blob/master/README.md
https://github.com/BU-NU-CLOUD-SP18/sample-project/blob/master/README.md
https://github.com/BU-NU-CLOUD-SP18/sample-project/blob/master/MOC-UI-ProjectProposalExample.md
https://github.com/BU-NU-CLOUD-SP18/sample-project/blob/master/MOC-UI-ProjectProposalExample.md


A Berkeley View of Cloud Computing

3

2/09 White paper by RAD Lab PIʼs/students

Goal: stimulate discussion on whatʼs new
• Clarify terminology
• Quantify comparisons
• Identify challenges & opportunities

UC Berkeley perspective
• industry engagement but no axe to grind
• users of CC since late 2007



Why Now (not then)?

5

The Web “Space Race”: Building-out of extremely large datacenters 
(10,000’s of commodity PCs)

Driven by growth in demand (more users)
• Infrastructure software: e.g., Google File System
• Operational expertise
• Discovered economy of scale: 5-7x cheaper than provisioning a medium-

sized (100’s machines facility)

More pervasive broadband internet

Free & open source software



Cloud Economics 101

6

Static provisioning for peak - wasteful, but necessary for SLA

Unused resources

Time

“Statically provisioned” 

data center

Time

“Virtual” data center 

in the cloud

Demand

Capacity

E
n
e

rg
y

Capacity



Risk of User Provisioning

7

Unused resources

Static data center

Demand

Capacity

Time

R
e

s
o
u
rc

e
s

Underutilization results if “peak” predictions are too optimistic



Risks of Under Provisioning

8

Lost revenue

R
e

s
o
u
rc

e
s

Capacity

Demand

Time (days)

Lost users

1 2 3

R
e

s
o
u
rc

e
s

Capacity

Demand

Time (days)
1 2 3

Demand

Capacity

Time (days)
1 2 3



9

What can you do with this?



Risk Transfers

10

Cost Associativity:
• 1K CPUs x 1 hour == 1 GPUs x 1K hours

Enabler for SaaS startups
• Animoto Facebook plugin => traffic doubled every 12 hours for 3 days
• Scaled from 50 to >3500 servers
• And scaled back down



Challenge and Opportunity

11

Challenges to adoption, growth, & business/policy models

Both technical and nontechnical

Most translate to 1 or more

Complete list in paper 



Challenge: Cloud Programming

12

Challenge: exposing parallelism
• MapReduce relies on “embarrassing parallelism”

Programmers must (re)write problems to expose this parallelism, if it’s 
there to be found

Tools still primitive, though progressing rapidly



Challenge: Big Data

13

Challenge: long-haul networking is most expensive cloud resource and 
improving most slowly

Copy 8TB to Amazon over ~20Mbps network 
~35 days, ~$800 in transfer fee (2010)

How about shipping 8TB drive to Amazon instead?
1 days, ~$150



What Is a Distribute System?

14

A set of cooperating computers that are communicating with each 
other over network to get some coherent task done

• multiple cooperating computers 
• storage for big web sites, MapReduce, 
• peer-to-peer sharing



Why Do People Build Distributed Systems

15

High performance
• Achieve parallelism

Fault Tolerance

Physical reason

Security



Infrastructure for Cloud

17

Three components
• Storage
• Communication 
• Computation

The big goals:
       Abstractions that hide the complexity of distribution.



Topics in DS

18

Performance 
• The goal: scalable throughput

Fault tolerance 
• 1000s of servers, big network -> always something broken We'd like to hide these 

failures from the application.

Consistency
•  General-purpose infrastructure needs well-defined behavior.



19

Imagine you are operating a Starbucks



Case Study: Starbucks

20



Case Study: Starbucks

21

Now imagine 1000x customers?



Challenge 1: Ever-growing Load

22

Data is big. Users are many. Requests 
are even more.

Google get 8.5 billion searches per 
day.



Scale-up?

23



Scale-up?

24

• You can always add more 
compute resources—such as 
CPU, memory, and disk 
capacity. 

• But no single machine can 
handle the ever-growing load



Approach 1: Scale-out (Sharing)!

25



Goal 1: Scalability

26

The more resource you add, the more requests 
you can serve. 

But never hope for perfect scalability 
• add one machine, increase your capacity 

proportionally forever?



Sample Scalability Curves

27



Challenge 2: Failure

28



Goal 2: Fault Tolerance

29

Goal is to hide failures as much as possible to provide a service that 
e.g., finishes the computation fast despite failures, stores some data 
reliably despite failures, … 

Fault tolerance subsumes: 
•  Availability: the service/data continues to be operational despite failures. 
•  Durability: some data or updates that have been acknowledged by the system 

will persist despite failures and will eventually become available



Goal 2: Fault Tolerance

30

Availability: I expect someone
will always take my order ..

Durability: staff remember my
choice and wouldn't ask me again
(even w/ failures)..



Approach 2: Replication

31



Challenge 3: Consistency

32

Three cups of 

Cappuccino 

please



She ordered

three cups of

Cappuccino

got itgot it

33

Challenge 3: Consistency



Change to 

Espresso
got it(didn't hear)

Wait, change 

to Espresso

34

Challenge 3: Consistency



Your 

Espresso is 

ready.

Your 

Cappuccino 

is ready.

???

35

Challenge 3: Consistency



Goal 3: Consistency Guarantee

36

Distributed systems try to create an illusion that users are using one 
single powerful machine

•  They guarantee that every replica has the same view of data



Approach 3: Protocols

37

• The general approach is to develop rigorous protocols, which we will 
generically call agreement protocols, that allow workers and replicas 
to coordinate in a consistent way despite failures. 

• Agreement protocols often rely on the notion of majorities: as long as 
a majority agrees on a value, the idea is that it can be safe to continue 
making that action. 

• Different protocols exist for different consistency challenges, and 
often the protocols can be composed to address bigger, more 
realistic challenges



38

Example: Web Service Architecture



Basic Architecture

39

Network

Web FE

DB

Web front end (FE), database server (DB), 
network. FE is stateless, all state in DB. 

Properties
• Performance? 
• Fault tolerance? 
• Scalability? 
• Semantics?



Basic Architecture

40

Network

Web FE

DB

Web front end (FE), database server 
(DB), network. FE is stateless, all 
state in DB. 

Properties
• Performance: poor 
• Fault tolerance: poor
• Scalability: poor
• Semantics: great!

Let's improve performance first!



Goal: Reduce Latency

41

Network

Web FE

DB

Performance 
• Read? 
• Write? 

Fault tolerance 
• Availability? 
• Durability? 

Scalability? 

Semantics (consistency)?

Cache



Goal: Reduce Latency

42

Network

Web FE

DB

Read latency: improved if working set fits in 
memory. 

Durability: depends on cache: good for write-
through $$, poor for write-back $$. 

Write latency is opposite: good with writeback, 
poor with write-through. 

Consistency: good: you have 1 FE accesses DB, 
going through 1 $$, so behavior is equivalent to 
single machine.

Cache

Let’s deal with scalability,27first on FE and later on DB.



Goal: Scale out the FE

43

Web FE

DB

Network

Web FE Web FE

CacheCache Cache

Launch multiple FEs. Each has its own local 
cache, which we’ll assume is writethrough. 

Properties: 
• Performance?
• Fault tolerance? 
• Scalability?
• Semantics?



Goal: Fault Tolerance For DB

44

Web FE

DB

Network

Web FE Web FE

CacheCache Cache

Launch identical replicas of the DB server, 
each with its disk. All replicas hold all data, 
writes go to all.

Properties: 
• Performance?
• Fault tolerance? 
• Scalability?
• Semantics?



Goal: Fault Tolerance For DB

45

Web FE

Network

Web FE Web FE

CacheCache Cache

• Writes now need to propagate to all replicas. So 
they are much slower! Even if done in parallel, 
because FE now needs to wait for the slowest of 
DB replicas to commit (assuming write-through 
cache, which offers the best durability). 

• All replicas must see all writes IN THE SAME 
ORDER! If order is exchanged, they can quickly 
go “out of sync”! So lots more consistency 
issues

DBDB DB



Goal: Fault Tolerance For DB

46

Web FE

Network

Web FE Web FE

CacheCache Cache

There are also availability issues. If you require all 
the replicas to be available when a write is satisfied 
(for durability), availability goes DOWN! Consensus 
protocols, which work on a majority of replicas, 
address this. 

Another consistency challenge: how are reads 
handled? If you read from one replica, which one 
should you read given that updates to the item 
you’re interested in might be in flight as you 
attempt to read it? We’ll address these issues in 
future lectures by structuring the replica set

DBDB DB

Let’s deal with DB scalability.



Last Goal: Scale out The DB

47

Web FE

Network

Web FE Web FE

CacheCache Cache
Partition the database into multiple shards, 
replicate each multiple times for fault tolerance. 
Requests for different shards go to different replica 
groups.

DBDB DBDBDB DBDB DBDB



Last Goal: Scale out The DB

48

Web FE

Network

Web FE Web FE

CacheCache Cache

New challenges that arise: 
•  How should data be sharded? Based on users, 

on some property of the data?

•  How should different partitions get assigned to 
replica groups? How do clients know which 
servers serve/store which shards? 

• If the FE wants to write/read multiple entries in 
the DB, how can it do that atomically if they span 
multiple shards? If different replica groups need 
to coordinate to implement atomic updates 
across shards, won’t that hinder scalability?

DBDB DBDBDB DBDB DBDB



Next Time

49

Read Google File System


	Slide 1: Lecture 3: Introduction to Distributed Systems Fall 2025                            
	Slide 2: Administrivia
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

