CE 528 Cloud Computing

Lecture 3: Introduction to Distributed Systems
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Chang Lou and Armando

Administrivia

We have sent an email with the project assignments.
* Please double-check your emailif you did not see it.

Each student will receive $150 in cloud credits.
* $50in Google Cloud credits
e $100in AWS credits

Start your project description
* Template
e example

https://github.com/BU-NU-CLOUD-SP18/sample-project/blob/master/README.md
https://github.com/BU-NU-CLOUD-SP18/sample-project/blob/master/README.md
https://github.com/BU-NU-CLOUD-SP18/sample-project/blob/master/MOC-UI-ProjectProposalExample.md
https://github.com/BU-NU-CLOUD-SP18/sample-project/blob/master/MOC-UI-ProjectProposalExample.md

A Berkeley View of Cloud Computing

2/09 White paper by RAD Lab PI’s/students

Goal: stimulate discussion on what’s new
 Clarify terminology
* Quantify comparisons
* |dentify challenges & opportunities

UC Berkeley perspective
* Industry engagement but no axe to grind
* users of CC since late 2007

Why Now (not then)?

The Web “Space Race”: Building-out of extremely large datacenters
(10,000’s of commodity PCs)

Driven by growth in demand (more users)
* |nfrastructure software: e.g., Google File System
* Operational expertise
* Discovered economy of scale: 5-7x cheaper than provisioning a medium-
sized (100’s machines facility)

More pervasive broadband internet

Free & open source software

Cloud Economics 101

Static provisioning for peak - wasteful, but necessary for SLA

A
//\V/\\Capacty
Demand

Y
N
- >

Capacity

AVA

Energy

Time Time
"Statically provisioned” “Virtual” data center
data center in the cloud

Unused resources

Risk of User Provisioning

Underutilization results if “peak” predictions are too optimistic

A Capacity
Unused resources
% Memand
Y
Time g

Static data center

Risks of Under Provisioning

ANVA

[N\
VARV

Demand

1 2 3
Time (days)

A
[72]
g /N
O
3 /\ /\ Capacity
n'd
Demand
1 2 3
Time (days)
Lost revenue
N
[72]
A NA
= N
3 \/\Capacity
o
0'd
g Demand

1 2 3
Time (days)
Lost users

What can you do with this?

Risk Transfers

Cost Associativity:
e 1KCPUsx1 hour==1GPUs x 1K hours

Enabler for SaaS startups

* Animoto Facebook plugin => traffic doubled every 12 hours for 3 days
e Scaled from 50 to >3500 servers
* And scaled back down

10

Challenge and Opportunity
Challenges to adoption, growth, & business/policy models

Both technical and nontechnical
Most translate to 1 or more

Complete listin paper

11

Challenge: Cloud Programming

Challenge: exposing parallelism
* MapReduce relies on “embarrassing parallelism”

Programmers must (re)write problems to expose this parallelism, if it’s
there to be found

Tools still primitive, though progressing rapidly

12

Challenge: Big Data

Challenge: long-haul networking is most expensive cloud resource and
improving most slowly

Copy 8TB to Amazon over ~20Mbps network
—~35 days, ~$800 in transfer fee (2010)

How about shipping 8TB drive to Amazon instead?
=1 days, ~$150

13

What Is a Distribute System?

A set of cooperating computers that are communicating with each
other over network to get some coherent task done

* multiple cooperating computers

* storage for big web sites, MapReduce,

* peer-to-peer sharing

14

Why Do People Build Distributed Systems

High performance
* Achieve parallelism

Fault Tolerance
Physical reason

Security

15

Infrastructure for Cloud

Three components
e Storage
e Communication
 Computation

The big goals:
Abstractions that hide the complexity of distribution.

17

Topics in DS

Performance
* The goal: scalable throughput

Fault tolerance
* 1000s of servers, big network -> always something broken We'd like to hide these
failures from the application.

Consistency
 General-purpose infrastructure needs well-defined behavior.

18

Imagine you are operating a Starbucks

STARBUCKS COFFEE

o
.

— — L
| o
.’

Case Study: Starbucks

20

Case Study: Starbucks

Now imagine 1000x customers”?

21

Challenge 1: Ever-growing Load

Data is big. Users are many. Requests . Z a o . 2 o o
are even more. e W W) W) W) W

Google get 8.5 billion searches per
day. g 8d 8 B 6 B

Scale-up?

23

Scale-up?

You can always add more

compute resources—such as
CPU, memory, and disk
capacity.

But no single machine can
handle the ever-growing load

24

Approach 1: Scale-out (Sharing)!

————]>

———)

———

iﬁl’ in-?’ AP iﬁl’ in-?’ AP

25

Goal 1: Scalability

The more resource you add, the more requests
you can serve.

But never hope for perfect scalability

* addone machine, increase your capacity
proportionally forever?

26

Sample Scalability Curves

Capacity
(handled %
load/time)

2=
1 # machines

27

Failure

Challenge 2

28

Goal 2: Fault Tolerance

Goalis to hide failures as much as possible to provide a service that

e.g., finishes the computation fast despite failures, stores some data
reliably despite failures, ...

Fault tolerance subsumes:

* Availability: the service/data continues to be operational despite failures.
 Durability: some data or updates that have been acknowledged by the system
will persist despite failures and will eventually become available

29

Goal 2: Fault Tolerance

Availability: | expect someone
will always take my order ..

Durability: staff remember my
choice and wouldn't ask me again
(even w/ failures)..

30

ion

Replicat

Approach 2

31

Challenge 3: Consistency

Three cups of
Cappuccino
please

32

Challenge 3: Consistency

She ordered
got it got it three cups of
Cappuccino

Challenge 3: Consistency

Change to Wait, change
Espresso to Espresso

(didn't hear) got it

Challenge 3: Consistency

Your Your
Cappuccino Espresso is
IS ready. ready.

2?77

Goal 3: Consistency Guarantee

Distributed systems try to create an illusion that users are using one

single powerful machine
* They guarantee that every replica has the same view of data

36

Approach 3: Protocols

The general approach is to develop rigorous
generically call agreement protocols, that al
to coordinate in a consistent way despite fai

nrotocols, which we will
low workers and replicas
lures.

Agreement protocols often rely on the notion of majorities: as long as

a majority agrees on a value, the idea is that
making that action.

It can be safe to continue

Different protocols exist for different consistency challenges, and
often the protocols can be composed to address bigger, more

realistic challenges

37

Example: Web Service Architecture

Basic Architecture

Web front end (FE), database server (DB),
Web FE network. FE is stateless, all state in DB.

Properties
QetworD Performance?

Fault tolerance?
Scalability?
Semantics?

DB

39

Basic Architecture

Web front end (FE), database server
Web FE (DB), network. FE is stateless, all
state in DB.

Qet"‘mrD Properties

* Performance: poor
DB * Fault tolerance: poor
* Scalability: poor

* Semantics: great!

orove performance first!

40

Goal: Reduce Latency

Web FE
|

Cache
|

QetworD

DB

Performance
e Read?
e Write?

Fault tolerance
* Availability?
* Durability?

Scalability?

Semantics (consistency)?

41

Goal: Reduce Latency

Web FE
|

Cache
|

QetworD

DB

Read latency: improved if working set fits in
memory.

Durability: depends on cache: good for write-
through $$, poor for write-back $$.

Write latency is opposite: good with writeback,
poor with write-through.

Consistency: good: you have 1 FE accesses DB,
going through 1 $$, so behavior is equivalent to
single machine.

Let’s deal with scalability, first on FE and later on DB. 22

Goal: Scale out the FE

Launch multiple FEs. Each has its own local

Web FE || WebFE || Web FE cache, which we’ll assume is writethrough.

~ | e

Cache || Cache || Cache .
| Properties:

QetworD * Performance?

e Faulttolerance?
* Scalability?
DB e Semantics?

43

Goal: Fault Tolerance For DB

Launch identical replicas of the DB server,

Web FE Web FE Web FE each with its disk. All replicas hold all data,

~ | P .
Cache || Cache || Cache writes go to all.
|

QetworD Properties:

* Performance?

* Faulttolerance?
DB e Scalability?

e Semantics?

44

Goal: Fault Tolerance For DB

* Writes now need to propagate to all replicas. So

| . :
Web FE Web FE Web FE they are much slower! Even if done in parallel,

\ | / because FE now needs to wait for the slowest of
Cache |l cache || cache DB replicas to commit (assuming write-through
l cache, which offers the best durability).

QetworD
\ * Allreplicas must see all writes IN THE SAME

/ ‘ ORDER! If order is exchanged, they can quickly
DB DB DB go “out of sync”! So lots more consistency
iIssues

45

Goal: Fault Tolerance For DB

There are also availability issues. If you require all
the replicas to be available when a write is satisfied

Web FE Web FE Web FE | (for durability), availability goes DOWN! Consensus

~ | e protocols, which work on a majority of replicas,
Cache || Cache || Cache address this.

Qetwor? Another consistency challenge: how are reads

handled? If you read from one replica, which one
DB DB DB should.you read g.lven.that updatgs to the item
you’re interested in might be in flight as you
attemptto read it? We’ll address these issues in
future lectures by structuring the replica set

Let’s deal with DB scalabili

46

Last Goal: Scale out The DB

Web FE Web FE Web FE
\ | /
Cache || Cache || Cache

{ DB II

Partition the database into multiple shards,
replicate each multiple times for fault tolerance.
Requests for different shards go to different replica
groups.

47

Last Goal: Scale out The DB

New challenges that arise:

Web FE Web FE Web FE
\ | /
Cache || Cache || Cache

{ DB II

How should data be sharded? Based on users,
on some property of the data?

How should different partitions get assigned to
replica groups? How do clients know which
servers serve/store which shards?

If the FE wants to write/read multiple entries in
the DB, how can it do that atomically if they span
multiple shards? If different replica groups need
to coordinate to implement atomic updates
across shards, won’t that hinder scalability?

48

Read Google File System

Next Time

49

	Slide 1: Lecture 3: Introduction to Distributed Systems Fall 2025
	Slide 2: Administrivia
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

