
Lecture 2: Overview of Cloud Computing Systems

Spring 2026

CE 528 Cloud Computing

Prof. Yigong Hu

Slides courtesy of Jeff Dean and Alan Liu

2

Utility computing: Corbató & Vyssotsky, “Introduction and Overview of the Multics system”, AFIPS

Conference, 1965.

3

4

5

How Did We Get to Where We Are?

6

Prior to mid 1990s: Distributed systems emphasized:
• modest-scale systems in a single site (Grapevine, many others), as well as

• widely distributed, decentralized systems (DNS)

Adjacent Fields

7

High Performance Computing:
• Heavy focus on performance, but not on fault-tolerance

Transactional processing systems/database systems:
• Strong emphasis on structured data, consistency

• Limited focus on very large scale, especially at low cost

Caveats

8

Very broad set of areas:

• Can’t possible cover all relevant work in one lecture

Google’s view of cloud computing

10

A Case for Networks of Workstations: NOW, Anderson, Culler, & Patterson. IEEE Micro,

1995

Cluster-Based Scalable Network Services, Fox, Gribble, Chawathe, Brewer, & Gauthier,

SOSP 1997.

An Early Cloud Server

11

Google, circa 1999

12

Early Google tenet:

Commodity PCs give high perf/$

Commodity components even better!

Aside: use of cork can land your computing

platform in the Smithsonian

At Modest Scale: Treat as Separate Machines

13

for m in a7 a8 a9 a10 a12 a13 a14 a16 a17 a18 a19

a20 a21 a22 a23 a24; do ssh -n $m "cd

/root/google; for j in "`seq $i $[$i+3]`'; do

j2=`printf %02d $j`; f=`echo '$files' | sed

s/bucket00/bucket$j2/g`; fgrun bin/buildindex
$f; done' & i=$[$i+4]; done

What happened to poor old a11 and a15?

At Larger Scale: Becomes Untenable

14

Typical First Year for a New Google Cluster (circa 2006)

15

~ 1 network rewiring (rolling ~5% of machines down over 2-day span)

~ 20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~ 5 racks go wonky (40-80 machines see 50% packetloss)

~ 8 network maintenances (4 might cause ~30-min random connectivity losses)

~12 router reloads (takes out DNS and external vips for a couple minutes)

~ 3 router failures (have to immediately pull traffic for an hour)

~ dozens of minor 30-second blips for DNS

~ 1000 individual machine failures

~ thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc

Reliability Must Come From Software

16

Provide Higher-Level View Than

“Large Collection of Individual Machines”

A Series of Steps,

All With Common Theme:

Self-manage and self-repair as much as possible

OS OS OS OS OS OS OS OS

...

17

First Step:

Abstract Away Individual Disks

Distributed file system

OS OS OS OS OS OS OS OS

...

Long History of Distributed File Systems

18

Xerox Alto (1973), NFS (1984), many others:
 File servers, distributed clients

AFS (Howard et al. ‘88):
 1000s of clients, whole file caching, weakly consistent

xFS (Anderson et al. ‘95):
 completely decentralized

Petal (Lee & Thekkath, ‘95), Frangipani (Thekkath et al., ‘96):
 distributed virtual disks, plus file system on top of Petal

Google File System

19

• Centralized master manages metadata

• 1000s of clients read/write directly to/from 1000s of disk serving processes

• Files chunks of 64 MB, each replicated on 3 different servers

• High fault tolerance + automatic recovery, high availability

OS OS OS OS OSOSOS OS

...

Distributed file system Master

Huge I/O bandwidth

GFS file system clients

Metadata

ops

Disks in Datacenter Basically Self-managing

20

21

Successful design pattern:

Centralized master for metadata/control, with

thousands of workers and thousands of clients

22

Once you can store data, then you want to be able

to process it efficiently

Large datasets implies need for highly parallel

computation

One important building block: Scheduling

jobs with 100s or 1000s of tasks

Multiple Approaches

23

Virtual machines

“Containers”: akin to a VM, but at the process level, not whole OS

Virtual Machines

24

Early work done by MIT and IBM in 1960s
○ Give separate users their own executing copy of OS

Reinvigorated by Bugnion, Rosenblum et al. in late 1990s
○ simplify effective utilization of multiprocessor machines

○ allows consolidation of servers

Raw VMs: key abstraction now offered by cloud service providers

Cluster Scheduling Systems

25

Goal: Place containers or VMs on physical machines
• handle resource requirements, constraints

• run multiple tasks per machine for efficiency

• handle machine failures

Similar problem to earlier HPC scheduling and distributed

workstation cluster scheduling systems
• e.g. Condor [Litzkow, Livny & Mutkow, ‘88]

Many Such System

26

Proprietary:
• Borg [Google: Verma et al., published 2015, in use since 2004]

(unpublished predecessor by Liang, Dean, Sercinoglu, et al. in use since 2002)

• Autopilot [Microsoft: Isaard et al., 2007]

• Tupperware [Facebook, Narayanan slide deck, 2014]

• Fuxi [Alibaba: Zhang et al., 2014]

Open source:
• Hadoop Yarn

• Apache Mesos [Hindman et al., 2011]

• Apache Aurora [2014]

• Kubernetes [2014]

Tension: Multiplexing Resource & Perf Isolation

27

Sharing machines across completely different jobs and tenants necessary

for effective utilization
• But leads to unpredictable performance blips

Isolating while still sharing
• Memory “ballooning” [Waldspurger, OSDI 2002]

• Linux containers

• ...

Controlling tail latency very important [Dean & Barroso, 2013]

• Especially in large fan-out system

Higher-Level Computation Frameworks

28

Give programmer a high-level abstraction for computation

Map computation automatically

onto a large cluster of machines

MapReduce

29

[Dean & Ghemawat, OSDI 2004]
• simple Map and Reduce abstraction

• hides messy details of locality, scheduling, fault tolerance, dealing with slow

machines, etc. in its implementation

• makes it very easy to do very wide variety of large-scale

• Computations

Hadoop - open source version of MapReduce

Succession of Higher-Level Computation Systems

30

Dryad [Isard et al., 2007] - general dataflow graphs

Sawzall [Pike et al. 2005], PIG [Olston et al. 2008],

DryadLinq [Yu et al. 2008], Flume [Chambers et al. 2010]

• higher-level languages/systems using MapReduce/Hadoop/Dryad as

underlying execution engine

Pregel [Malewicz et al., 2010] - graph computations

Spark [Zaharia et al., 2010] - in-memory working sets

Multiple Approaches

31

Desires:
• Spread across many machines, grow and shrink automatically

• Handle machine failures quickly and transparently

• Often prefer low latency and high performance over consistency

keys TBs to 100s of PBs of data

106, 108, or more reqs/sec

Distributed Storage System

32

BigTable [Google: Chang et al. OSDI 2006]

• higher-level storage system built on top of distributed file system (GFS)

• data model: rows, columns, timestamps

• no cross-row consistency guarantees

• state managed in small pieces (tablets)

• recovery fast (10s or 100s of machines each recover state of one tablet)

Dynamo [Amazon: DeCandia et al., 2007]

• versioning + app-assisted conflict resolution

Spanner [Google: Corbett et al., 2012]

• wide-area distribution, supports both strong and weak consistency

33

Successful design pattern:

Give each machine hundreds or thousands of units

of work or state

Helps with:

dynamic capacity sizing

load balancing

faster failure recovery

34

Making these systems available to

developers everywhere

The Public Cloud

Remember this?

35

Host it R us. Host 4 Less

AirBnB Example

36

Success of market depends on network of renters and landlords;
• starts really small

AirBnB

37

2010 – 24 EC2 instances, 300 GB of data

2015 – 1000 EC2 instances, 50 TBytes data

Grew up entirely on AWS, no data center, no capital purchases, no

racking/stacking, no acquisition networking…

• 5-person operations team

• Piggyback on AWS for external network, availability zones

Rapid growth easily accommodated.

Coursera

38

Massive on-line courses from Stanford, Duke…

Went from 0 to 3.2 million users in first year

Accessed from around the world

Spikes common, e.g., 75% increase in load in 5

minutes

Many Cloud Provides

39

Make computing resources available on demand
• through a growing set of simple APIs

• leverages economies of scale of large datacenters

• … for anyone with a credit card

• … at a large scale, if desired

Cloud Services Provides

40

Amazon: Queue API in 2004, EC2 launched in 2006

Google: AppEngine in 2005, other services starting in 2008

Microsoft: Azure launched in 2008.

Millions of customers using these services

Shift towards these services is accelerating

Comprehensiveness of APIs increasing over time

Top-Down View of the Course

43

DC Building

Racks

Servers

Internal Network

VMs, Containers, etc

VM/Container schedulers

Distributed File System

Distributed Computation

Tasks/processes

A computer

Scheduling Systems

High level computation

frameworks

File systems

(Semi) Structured Data Distributed Data Base &
Streaming

Cloud Reliability Software Failure

Top-Down View of the Course

44

DC Building

Racks

Servers

Internal Network

VMs, Containers, etc

VM/Container schedulers

Distributed File System

Distributed Computation

Tasks/processes

A computer

Scheduling Systems

High level computation

frameworks

File systems

(Semi) Structured Data Distributed Data Base &
Streaming

Datacenter as a

computer

Berkely view of cloud computing

Cloud Reliability Software Failure

Top-Down View of the Course

45

DC Building

Racks

Servers

Internal Network

VMs, Containers, etc

VM/Container schedulers

Distributed File System

Distributed Computation

Tasks/processes

A computer

Scheduling Systems

High level computation

frameworks

File systems

(Semi) Structured Data Distributed Data Base &
Streaming

Datacenter as a

computer

Berkely view of cloud computing

Xen Container-OS

MapReduce

Google File Sys

Cloud Reliability Software Failure

Top-Down View of the Course

46

DC Building

Racks

Servers

Internal Network

VMs, Containers, etc

VM/Container schedulers

Distributed File System

Distributed Computation

Tasks/processes

A computer

Scheduling Systems

High level computation

frameworks

File systems

(Semi) Structured Data

Cloud Reliability Software Failure

Distributed Data Base &
Streaming

Datacenter as a

computer

Berkely view of cloud computing

Xen Container-OS

MapReduce

Google File Sys

Borg Mesos

Kafka

Dynamo

Raft Cloud Failure

Top-Down View of the Course

47

DC Building

Racks

Servers

Internal Network

VMs, Containers, etc

VM/Container schedulers

Distributed File System

Distributed Computation

Tasks/processes

A computer

Scheduling Systems

High level computation

frameworks

File systems

(Semi) Structured Data

Cloud Reliability Software Failure

Distributed Data Base &
Streaming

Datacenter as a

computer

Berkely view of cloud computing

Xen Container-OS

Google File Sys

Borg Mesos

Kafka

Dynamo

Raft Cloud Failure

MapReduce

Hive

Spark

CEPHFlat Datacenter

Next Time..

48

Read: Above the Clouds: A Berkeley View of Cloud Computing

	Slide 1: Lecture 2: Overview of Cloud Computing Systems Spring 2026
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

