CE 528 Cloud Computing

Lecture 2: Overview of Cloud Computing Systems
Spring 2026

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Jeff Dean and Alan Liu

Utility computing: Corbatd & Vyssotsky, “Introduction and Overview of the Multics system”, AFIPS
Conference, 1965.

.
.
2 - |!-
-
A

How Did We Get to Where We Are?

Prior to mid 1990s: Distributed systems emphasized:
 modest-scale systems in a single site (Grapevine, many others), as well as
« widely distributed, decentralized systems (DNS)

Adjacent Fields

High Performance Computing:
* Heavy focus on performance, but not on fault-tolerance

Transactional processing systems/database systems:
« Strong emphasis on structured data, consistency
« Limited focus on very large scale, especially at low cost

Caveats

Very broad set of areas:
 (Can't possible cover all relevant work in one lecture

Google’s view of cloud computing

The Berkeley NOW Project

Mainfame Wark-

Mini- sfatian * 4 *‘ * £ “
“ camputer . ¢ . ¢ ' £ . < I ¢
Yectar Supercamputer “ *‘ “ “ *“ *(
oo o (ol ol el ol afrd o
el ol oot el g
Rl " Qaprer
NOW

A Case for Networks of Workstations: NOW, Anderson, Culler, & Patterson. IEEE Micro,
1995

Cluster-Based Scalable Network Services, Fox, Gribble, Chawathe, Brewer, & Gauthier,
SOSP 1997.

10

An Early Cloud Server

== P
| , .,,,,,,,/“,,,_/
AN
- AN
i AN
| k. A A
,

11

Google, circa 1999
Early Google tenet:
Commodity PCs give high perf/$
Commodity components even better!

Aside: use of cork can land your computing
platform in the Smithsonian

12

At Modest Scale: Treat as Separate Machines

for m 1n a7 a8 a9 all0 al2 al3 ald4d alo al’7 al8 al®d
a20 a2l a22 a23 a24; do ssh -n Sm "cd
/root/google; for j in "'seqg $1i $[S$1i+3]°'; do
j2="printf %02d $j ; f= echo 'S$Sfiles' | sed
s/bucket00/bucketsj2/g ; fgrun bin/buildindex

Sf; done' & i=S$S[$i+4]; done

What happened to poorold a1l and a15?

13

At Larger
) 4% | |
g

"y

—

—

 —

.‘lg'o“'i('l}'c':fji.} I;'
SR R R R R R R R BT (R 141

-~
4
-

2.k
-

=
-
C-
-
-
-

Scale: Becomes Untenable

14

Typical First Year for a New Google Cluster (circa 2006)

~ 1 network rewiring (rolling ~5% of machines down over 2-day span)

~ 20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~ 5 racks go wonky (40-80 machines see 50% packetloss)

~ 8 network maintenances (4 might cause ~30-min random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~ 3 router failures (have to immediately pull traffic for an hour)

~ dozens of minor 30-second blips for DNS

~ 1000 individual machine failures

~ thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc

Reliability Must Come From Software

15

A Series of Steps,
All With Common Theme:

Provide Higher-Level View Than
“Large Collection of Individual Machines”

Self-manage and self-repair as much as possible

0S 0S OS 0S OS OS 0S OS

SRERENERNENE Ral=

First Step:
Abstract Away Individual Disks

Distributed file system

OS 0S OS OS 0S OS 0S

SRENENERNEREN SRS

Long History of Distributed File Systems

Xerox Alto (1973), NFS (1984), many others:

File servers, distributed clients

AFS (Howard et al. ‘88):

1000s of clients, whole file caching, weakly consistent

XFS (Anderson et al. ‘95):

completely decentralized

Petal (Lee & Thekkath, '95), Frangipani (Thekkath et al., ‘96):

distributed virtual disks, plus file system on top of Petal

18

Google File System

Centralized master manages metadata

1000s of clients read/write directly to/from 1000s of disk serving processes
Files chunks of 64 MB, each replicated on 3 different servers
High fault tolerance + automatic recovery, high availability

Huge 1/O bandwidth

Metadata
ops

Distributed file system

0S

0OS

H

0S

H

0S

OS

H

0S

H

0S

H

OS

H

19

TT T T TN YE Y LR R B B B B

»

FTT T T YT LY tTTTrse

TIPS T TTTTTYEYY T

»

TfrTTrTTrT sy TTTTTEELELDTY

»
TfrTTrTTrrr1 fTTTTTTr

.
fa71TTT1T222 s LE R B E R R E R

.
TTTTTTTrs 2 fFTTTTTITTs
-

fFrsT T TTTTTETY:

ically Self-managing

EEEREE S R T D

L a4 220 5% A% 2% B A

1 2% 23 3 2% = o = ki i

N
©
n
-
D
i
c
Q
&
©
i
©
-

1q

Disks

Successful design pattern:

Centralized master for metadata/control, with
thousands of workers and thousands of clients

21

Once you can store data, then you want to be able
to process it efficiently

Large datasets implies need for highly parallel
computation

One important building block: Scheduling
jobs with 100s or 1000s of tasks

22

Multiple Approaches

Virtual machines

“Containers”: akin to a VM, but at the process level, not whole OS

23

Virtual Machines
Early work done by MIT and IBM in 1960s

o Give separate users their own executing copy of OS

Reinvigorated by Bugnion, Rosenblum et al. in late 1990s
o simplify effective utilization of multiprocessor machines
o allows consolidation of servers

Raw VMs: key abstraction now offered by cloud service providers

24

Cluster Scheduling Systems

Goal: Place containers or VMs on physical machines
 handle resource requirements, constraints
« run multiple tasks per machine for efficiency
« handle machine failures

Similar problem to earlier HPC scheduling and distributed

workstation cluster scheduling systems
* e.g. Condor [Litzkow, Livhy & Mutkow, ‘88]

25

Many Such System

Proprietary:
 Borg [Google: Verma et al., published 2015, in use since 2004]
(unpublished predecessor by Liang, Dean, Sercinoglu, et al. in use since 2002)
« Autopilot [Microsoft: Isaard et al., 2007]
« Tupperware [Facebook, Narayanan slide deck, 2014]
* Fuxi[Alibaba: Zhang et al., 2014]

Open source:

Hadoop Yarn

Apache Mesos [Hindman et al., 2011]
Apache Aurora [2014]

Kubernetes [2014]

26

Tension: Multiplexing Resource & Perf Isolation

Sharing machines across completely different jobs and tenants necessary
for effective utilization
« But leads to unpredictable performance blips

Isolating while still sharing

 Memory “ballooning” [Waldspurger, OSDI 2002]
* Linux containers

Controlling tail latency very important [Dean & Barroso, 2013]
« Especially in large fan-out system

27

Higher-Level Computation Frameworks

Give programmer a high-level abstraction for computation

Map computation automatically
onto a large cluster of machines

28

MapReduce

[Dean & Ghemawat, OSDI 2004]
« simple Map and Reduce abstraction

* hides messy details of locality, scheduling, fault tolerance, dealing with slow
machines, etc. in its implementation

* makes it very easy to do very wide variety of large-scale
« Computations

Hadoop - open source version of MapReduce

29

Succession of Higher-Level Computation Systems

Dryad [Isard et al., 2007] - general dataflow graphs
Sawzall [Pike et al. 2005], PIG [Olston et al. 2008],
DryadLing [Yu et al. 2008], Flume [Chambers et al. 2010]
* higher-level languages/systems using MapReduce/Hadoop/Dryad as
underlying execution engine

Pregel [Malewicz et al., 2010] - graph computations

Spark [Zaharia et al., 2010] - in-memory working sets

30

Multiple Approaches

TBs to 100s of PBs of data
108, 108, or more reqs/sec

keys

Desires:
* Spread across many machines, grow and shrink automatically
« Handle machine failures quickly and transparently
« Often prefer low latency and high performance over consistency

31

Distributed Storage System

BlgTabIe [Google: Chang et al. OSDI 2006]
 higher-level storage system built on top of distributed file system (GFS)
« data model: rows, columns, timestamps
* NO Cross-row consistency guarantees
« state managed in small pieces (tablets)
» recovery fast (10s or 100s of machines each recover state of one tablet)

Dynamo [Amazon: DeCandia et al., 2007]
 versioning + app-assisted conflict resolution

Spanner [Google: Corbett et al., 2012]
« wide-area distribution, supports both strong and weak consistency

32

Successful design pattern:

Give each machine hundreds or thousands of units
of work or state

Helps with:
dynamic capacity sizing
load balancing
faster failure recovery

33

The Public Cloud

Making these systems available to
developers everywhere

Remember this?

Host it R us.) Host 4 Less

<as.
v

V

35

AirBnB Example

Success of market depends on network of renters and landlords;

 starts really small

AirBnB Total Listings Growth

2000000

1000000

Total Active Listings

Month

36

AirBnB

2010 — 24 EC2 instances, 300 GB of data
2015 -1000 EC2 instances, 50 TBytes data
Grew up entirely on AWS, no data center, no capital purchases, no
racking/stacking, no acquisition networking...
« 5-person operations team

* Piggyback on AWS for external network, availability zones

Rapid growth easily accommodated.

37

Coursera

Massive on-line courses from Stanford, Duke...
Went from 0 to 3.2 million users in first year
Accessed from around the world

Spikes common, e.g., 75% increase in load in 5
minutes

38

Many Cloud Provides

Make computing resources available on demand
« through a growing set of simple APIs
 leverages economies of scale of large datacenters
» ... for anyone with a credit card
« ... atalarge scale, if desired

39

Cloud Services Provides
Amazon: Queue APl in 2004, EC2 launched in 2006

Google: AppEngine in 2005, other services starting in 2008
Microsoft: Azure launched in 2008.

Millions of customers using these services
Shift towards these services is accelerating

Comprehensiveness of APIs increasing over time

40

A computer

Tasks/processes

Top-Down View of the Course

DC Building
Racks
Servers
Internal Network

VVMs, Containers, etc

Scheduling Systems

File systems

High level computation
frameworks

VM/Container schedulers

Distributed File System

Distributed Computation

| (Semi) Structured Data |

Cloud Reliability

Distributed Data Base &
Streaming

Software Failure

43

Top-Down View of the Course

Berkely view of cloud computing

DC Building
A computer | Racks Dafocrintﬁz ears a
Servers P
Intemal Network
Tasks/processes VVMs, Containers, etc
Scheduling Systems VM/Container schedulers
File systems | Distributed File System
High level computation Distributed Computation
frameworks
| (Semi) Structured Data | Distributed Da’fa Base &
Streaming
| Cloud Reliability | Software Failure

Top-Down View of the Course

Berkely view of cloud computing

DC Building
A computer | Racks Datacenter as a
Servers computer
Intemal Network
Tasks/processes VMs, Containers, etc Xen Container-OS
Scheduling Systems VM/Container schedulers
File systems | | Distributed File System Google File Sys
i i . . MapReduce
High level computation Distributed Computation P
frameworks
| (Semi) Structured Data | Distributed DaFa Base &
Streaming
| Cloud Reliability | Software Failure

Top-Down View of the Course

Berkely view of cloud computing

DC Building
A computer | SF:’\C/:le(rSs Dafocr?‘r;i:rs a
Internal Network
Tasks/processes VMs, Containers, etc Xen Container-OS

Scheduling Systems VM/Container schedulers Borg Mesos

File systems | Distributed File System Google File Sys
High level computation Distributed Computation MapReduce
frameworks
[(Semi) Structured Data | | Distributed Data Base & Kafka

Streaming Dynamo

[Cloud Reliability | Software Failure SGil el LT

Top-Down View of the Course

DC Building
A computer | Racks
Servers
Internal Network
Tasks/processes VVMs, Containers, etc

Scheduling Systems

File systems |

High level computation
frameworks

VM/Container schedulers

Distributed File System

Distributed Computation

| (Semi) Structured Data |

| Cloud Reliability

Distributed Data Base &
Streaming

Software Failure

Berkely view of cloud computing

Datacenter as a
computer

Xen Container-OS
Borg Mesos

Google File Sys Flat Datacenter

MapReduce Spark
Hive

Kafka
Dynamo

Raft Cloud Failure

CEPH

47

Next Time..

Read: Above the Clouds: A Berkeley View of Cloud Computing

48

	Slide 1: Lecture 2: Overview of Cloud Computing Systems Spring 2026
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

