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Utility computing: Corbatd & Vyssotsky, “Introduction and Overview of the Multics system”, AFIPS
Conference, 1965.
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How Did We Get to Where We Are?

Prior to mid 1990s: Distributed systems emphasized:
 modest-scale systems in a single site (Grapevine, many others), as well as
« widely distributed, decentralized systems (DNS)



Adjacent Fields

High Performance Computing:
* Heavy focus on performance, but not on fault-tolerance

Transactional processing systems/database systems:
« Strong emphasis on structured data, consistency
« Limited focus on very large scale, especially at low cost



Caveats

Very broad set of areas:
 (Can't possible cover all relevant work in one lecture

Google’s view of cloud computing



The Berkeley NOW Project
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A Case for Networks of Workstations: NOW, Anderson, Culler, & Patterson. IEEE Micro,
1995

Cluster-Based Scalable Network Services, Fox, Gribble, Chawathe, Brewer, & Gauthier,
SOSP 1997.
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An Early Cloud Server
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Google, circa 1999
Early Google tenet:
Commodity PCs give high perf/$
Commodity components even better!

Aside: use of cork can land your computing
platform in the Smithsonian
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At Modest Scale: Treat as Separate Machines

for m 1n a7 a8 a9 all0 al2 al3 ald4d alo al’7 al8 al®d
a20 a2l a22 a23 a24; do ssh -n Sm "cd
/root/google; for j in "'seqg $1i $[S$1i+3]°'; do
j2="printf %02d $j ; f= echo 'S$Sfiles' | sed
s/bucket00/bucketsj2/g ; fgrun bin/buildindex

Sf; done' & i=S$S[$i+4]; done

What happened to poorold a1l and a15?
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At Larger
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Scale: Becomes Untenable
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Typical First Year for a New Google Cluster (circa 2006)

~ 1 network rewiring (rolling ~5% of machines down over 2-day span)

~ 20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~ 5 racks go wonky (40-80 machines see 50% packetloss)

~ 8 network maintenances (4 might cause ~30-min random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~ 3 router failures (have to immediately pull traffic for an hour)

~ dozens of minor 30-second blips for DNS

~ 1000 individual machine failures

~ thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc

Reliability Must Come From Software
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A Series of Steps,
All With Common Theme:

Provide Higher-Level View Than
“Large Collection of Individual Machines”

Self-manage and self-repair as much as possible
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First Step:
Abstract Away Individual Disks

Distributed file system

OS 0S OS OS 0S OS 0S
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Long History of Distributed File Systems

Xerox Alto (1973), NFS (1984), many others:

File servers, distributed clients

AFS (Howard et al. ‘88):

1000s of clients, whole file caching, weakly consistent

XFS (Anderson et al. ‘95):

completely decentralized

Petal (Lee & Thekkath, '95), Frangipani (Thekkath et al., ‘96):

distributed virtual disks, plus file system on top of Petal
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Google File System

Centralized master manages metadata

1000s of clients read/write directly to/from 1000s of disk serving processes
Files chunks of 64 MB, each replicated on 3 different servers
High fault tolerance + automatic recovery, high availability

Huge 1/O bandwidth

Metadata
ops

Distributed file system
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Successful design pattern:

Centralized master for metadata/control, with
thousands of workers and thousands of clients
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Once you can store data, then you want to be able
to process it efficiently

Large datasets implies need for highly parallel
computation

One important building block: Scheduling
jobs with 100s or 1000s of tasks
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Multiple Approaches

Virtual machines

“Containers”: akin to a VM, but at the process level, not whole OS
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Virtual Machines
Early work done by MIT and IBM in 1960s

o Give separate users their own executing copy of OS

Reinvigorated by Bugnion, Rosenblum et al. in late 1990s
o simplify effective utilization of multiprocessor machines
o allows consolidation of servers

Raw VMs: key abstraction now offered by cloud service providers
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Cluster Scheduling Systems

Goal: Place containers or VMs on physical machines
 handle resource requirements, constraints
« run multiple tasks per machine for efficiency
« handle machine failures

Similar problem to earlier HPC scheduling and distributed

workstation cluster scheduling systems
* e.g. Condor [Litzkow, Livhy & Mutkow, ‘88]
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Many Such System

Proprietary:
 Borg [Google: Verma et al., published 2015, in use since 2004]
(unpublished predecessor by Liang, Dean, Sercinoglu, et al. in use since 2002)
« Autopilot [Microsoft: Isaard et al., 2007]
« Tupperware [Facebook, Narayanan slide deck, 2014]
* Fuxi[Alibaba: Zhang et al., 2014]

Open source:

Hadoop Yarn

Apache Mesos [Hindman et al., 2011]
Apache Aurora [2014]

Kubernetes [2014]

26



Tension: Multiplexing Resource & Perf Isolation

Sharing machines across completely different jobs and tenants necessary
for effective utilization
« But leads to unpredictable performance blips

Isolating while still sharing

 Memory “ballooning” [Waldspurger, OSDI 2002]
* Linux containers

Controlling tail latency very important [Dean & Barroso, 2013]
« Especially in large fan-out system
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Higher-Level Computation Frameworks

Give programmer a high-level abstraction for computation

Map computation automatically
onto a large cluster of machines

28



MapReduce

[Dean & Ghemawat, OSDI 2004]
« simple Map and Reduce abstraction

* hides messy details of locality, scheduling, fault tolerance, dealing with slow
machines, etc. in its implementation

* makes it very easy to do very wide variety of large-scale
« Computations

Hadoop - open source version of MapReduce
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Succession of Higher-Level Computation Systems

Dryad [Isard et al., 2007] - general dataflow graphs
Sawzall [Pike et al. 2005], PIG [Olston et al. 2008],
DryadLing [Yu et al. 2008], Flume [Chambers et al. 2010]
* higher-level languages/systems using MapReduce/Hadoop/Dryad as
underlying execution engine

Pregel [Malewicz et al., 2010] - graph computations

Spark [Zaharia et al., 2010] - in-memory working sets
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Multiple Approaches

TBs to 100s of PBs of data
108, 108, or more reqs/sec

keys

Desires:
* Spread across many machines, grow and shrink automatically
« Handle machine failures quickly and transparently
« Often prefer low latency and high performance over consistency

31



Distributed Storage System

BlgTabIe [Google: Chang et al. OSDI 2006]
 higher-level storage system built on top of distributed file system (GFS)
« data model: rows, columns, timestamps
* NO Cross-row consistency guarantees
« state managed in small pieces (tablets)
» recovery fast (10s or 100s of machines each recover state of one tablet)

Dynamo [Amazon: DeCandia et al., 2007]
 versioning + app-assisted conflict resolution

Spanner [Google: Corbett et al., 2012]
« wide-area distribution, supports both strong and weak consistency
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Successful design pattern:

Give each machine hundreds or thousands of units
of work or state

Helps with:
dynamic capacity sizing
load balancing
faster failure recovery
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The Public Cloud

Making these systems available to
developers everywhere



Remember this?
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AirBnB Example

Success of market depends on network of renters and landlords;

 starts really small

AirBnB Total Listings Growth

2000000

1000000

Total Active Listings

Month
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AirBnB

2010 — 24 EC2 instances, 300 GB of data
2015 -1000 EC2 instances, 50 TBytes data
Grew up entirely on AWS, no data center, no capital purchases, no
racking/stacking, no acquisition networking...
« 5-person operations team

* Piggyback on AWS for external network, availability zones

Rapid growth easily accommodated.
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Coursera

Massive on-line courses from Stanford, Duke...
Went from 0 to 3.2 million users in first year
Accessed from around the world

Spikes common, e.g., 75% increase in load in 5
minutes

38



Many Cloud Provides

Make computing resources available on demand
« through a growing set of simple APIs
 leverages economies of scale of large datacenters
» ... for anyone with a credit card
« ... atalarge scale, if desired
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Cloud Services Provides
Amazon: Queue APl in 2004, EC2 launched in 2006

Google: AppEngine in 2005, other services starting in 2008
Microsoft: Azure launched in 2008.

Millions of customers using these services
Shift towards these services is accelerating

Comprehensiveness of APIs increasing over time
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A computer

Tasks/processes

Top-Down View of the Course

DC Building
Racks
Servers
Internal Network

VVMs, Containers, etc

Scheduling Systems

File systems

High level computation
frameworks

VM/Container schedulers

Distributed File System

Distributed Computation

| (Semi) Structured Data |

Cloud Reliability

Distributed Data Base &
Streaming

Software Failure
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Top-Down View of the Course

Berkely view of cloud computing

DC Building
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Servers P
Intemal Network
Tasks/processes VVMs, Containers, etc
Scheduling Systems VM/Container schedulers
File systems | Distributed File System
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| (Semi) Structured Data | Distributed Da’fa Base &
Streaming
| Cloud Reliability | Software Failure




Top-Down View of the Course

Berkely view of cloud computing

DC Building
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Intemal Network
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Top-Down View of the Course

Berkely view of cloud computing

DC Building
A computer | SF:’\C/:le(rSs Dafocr?‘r;i:rs a
Internal Network
Tasks/processes VMs, Containers, etc Xen Container-OS

Scheduling Systems VM/Container schedulers Borg Mesos

File systems | Distributed File System Google File Sys
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Top-Down View of the Course

DC Building
A computer | Racks
Servers
Internal Network
Tasks/processes VVMs, Containers, etc

Scheduling Systems

File systems |

High level computation
frameworks

VM/Container schedulers

Distributed File System

Distributed Computation

| (Semi) Structured Data |

| Cloud Reliability

Distributed Data Base &
Streaming

Software Failure

Berkely view of cloud computing

Datacenter as a
computer

Xen Container-OS
Borg Mesos

Google File Sys Flat Datacenter

MapReduce Spark
Hive

Kafka
Dynamo

Raft Cloud Failure

CEPH
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Next Time..

Read: Above the Clouds: A Berkeley View of Cloud Computing
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